Bob is playing a game called "Dungeon 2" which is the sequel to the popular "Dungeon" released last year. The game is played on a map consisting of $N$ rooms and $N-1$ roads connecting them. The roads allow bidirectional traffic and the player can start his tour from any room and reach any other room by way of multiple of roads. A point is printed in each of the rooms.
Bob tries to accumulate the highest score by visiting the rooms by cleverly routing his character "Tora-Tora." He can add the point printed in a room to his score only when he reaches the room for the first time. He can also add the points on the starting and ending rooms of Tora-Tora’s journey. The score is reduced by one each time Tora-Tore passes a road. Tora-Tora can start from any room and end his journey in any room.
Given the map information, make a program to work out the maximum possible score Bob can gain.
The input is given in the following format.
$N$ $p_1$ $p_2$ $...$ $p_N$ $s_1$ $t_1$ $s_2$ $t_2$ $...$ $s_{N-1}$ $t_{N-1}$
The first line provides the number of rooms $N$ ($1 \leq N \leq 100,000$). Each of the subsequent $N$ lines provides the point of the $i$-th room $p_i$ ($-100 \leq p_i \leq 100$) in integers. Each of the subsequent lines following these provides the information on the road directly connecting two rooms, where $s_i$ and $t_i$ ($1 \leq s_i < t_i \leq N$) represent the numbers of the two rooms connected by it. Not a single pair of rooms are connected by more than one road.
Output the maximum possible score Bob can gain.
7 6 1 -1 4 3 3 1 1 2 2 3 3 4 3 5 5 6 5 7
10
For example, the score is maximized by routing the rooms in the following sequence: $6 \rightarrow 5 \rightarrow 3 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1$.
4 5 0 1 1 1 2 2 3 2 4
5
The score is maximized if Tora-Tora stats his journey from room 1 and ends in the same room.