Let b_i(x) be the i-th least significant bit of x, i.e. the i-th least significant digit of x in base 2 (i \geq 1). For example, since 6 = (110)_2, b_1(6) = 0, b_2(6) = 1, b_3(6) = 1, b_4(6) = 0, b_5(6) = 0, and so on.
Let A and B be integers that satisfy 1 \leq A \leq B \leq 10^{18}, and k_i be the number of integers x such that A \leq x \leq B and b_i(x) = 1.
Your task is to write a program that determines A and B for a given \{k_i\}.
The input consists of multiple datasets. The number of datasets is no more than 100,000. Each dataset has the following format:
n k_1 k_2 ... k_n
The first line of each dataset contains an integer n (1 \leq n \leq 64). Then n lines follow, each of which contains k_i (0 \leq k_i \leq 2^{63} - 1). For all i > n, k_i = 0.
The input is terminated by n = 0. Your program must not produce output for it.
For each dataset, print one line.
Many
(without quotes).None
(without quotes).3 2 2 1 49 95351238128934 95351238128934 95351238128932 95351238128936 95351238128936 95351238128936 95351238128960 95351238128900 95351238128896 95351238129096 95351238128772 95351238129096 95351238129096 95351238126156 95351238131712 95351238131712 95351238149576 95351238093388 95351238084040 95351237962316 95351238295552 95351237911684 95351237911684 95351235149824 95351233717380 95351249496652 95351249496652 95351226761216 95351226761216 95351082722436 95351082722436 95352054803020 95352156464260 95348273971200 95348273971200 95354202286668 95356451431556 95356451431556 95346024826312 95356451431556 95356451431556 94557999988736 94256939803780 94256939803780 102741546035788 87649443431880 87649443431880 140737488355328 32684288648324 64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 11 0 0 1 1 1 0 1 1 1 1 1 63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 1 1 1 1 0
1 4 123456789101112 314159265358979 None 2012 2012 None Many