Japanese Animal Girl Library (JAG Library) is famous for a long bookshelf. It contains $N$ books numbered from $1$ to $N$ from left to right. The weight of the $i$-th book is $w_i$.
One day, naughty Fox Jiro shuffled the order of the books on the shelf! The order has become a permutation $b_1, ..., b_N$ from left to right. Fox Hanako, a librarian of JAG Library, must restore the original order. She can rearrange a permutation of books $p_1, ..., p_N$ by performing either operation A or operation B described below, with arbitrary two integers $l$ and $r$ such that $1 \leq l < r \leq N$ holds.
Operation A:
Operation B:
This picture illustrates the orders of the books before and after applying operation A and B for $p = (3,1,4,5,2,6), l = 2, r = 5$.
Since the books are heavy, operation A needs $\sum_{i=l+1}^r w_{p_i} + C \times (r-l) \times w_{p_l}$ units of labor and operation B needs $\sum_{i=l}^{r-1} w_{p_i} + C \times (r-l) \times w_{p_r}$ units of labor, where $C$ is a given constant positive integer.
Hanako must restore the initial order from $b_i, ..., b_N$ by performing these operations repeatedly. Find the minimum sum of labor to achieve it.
The input consists of a single test case formatted as follows.
$N$ $C$ $b_1$ $w_{b_1}$ : $b_N$ $w_{b_N}$
The first line conists of two integers $N$ and $C$ ($1 \leq N \leq 10^5, 1 \leq C \leq 100$). The ($i+1$)-th line consists of two integers $b_i$ and $w_{b_i}$ ($1 \leq b_i \leq N, 1 \leq w_{b_i} \leq 10^5$). The sequence ($b_1, ..., b_N$) is a permutation of ($1, ..., N$).
Print the minimum sum of labor in one line.
3 2 2 3 3 4 1 2
15
Performing operation B with $l = 1, r = 3$, i.e. removing book 1 then inserting it into the left of book 2 is an optimal solution. It costs $(3+4)+2\times2\times2=15$ units of labor.
3 2 1 2 2 3 3 3
0
10 5 8 3 10 6 5 8 2 7 7 6 1 9 9 3 6 2 4 5 3 5
824