There are two countries, Imperial Cacao and Principality of Cocoa. Two girls, Alice (the Empress of Cacao) and Brianna (the Princess of Cocoa) are friends and both of them love chocolate very much.
One day, Alice found a transparent tube filled with chocolate balls (Figure I.1). The tube has only one opening at its top end. The tube is narrow, and the chocolate balls are put in a line. Chocolate balls are identified by integers 1, 2, . . ., $N$ where $N$ is the number of chocolate balls. Chocolate ball 1 is at the top and is next to the opening of the tube. Chocolate ball 2 is next to chocolate ball 1, . . ., and chocolate ball $N$ is at the bottom end of the tube. The chocolate balls can be only taken out from the opening, and therefore the chocolate balls must be taken out in the increasing order of their numbers.
Figure I.1. Transparent tube filled with chocolate balls
Alice visited Brianna to share the tube and eat the chocolate balls together. They looked at the chocolate balls carefully, and estimated that the $nutrition value$ and the $deliciousness$ of chocolate ball $i$ are $r_i$ and $s_i$, respectively. Here, each of the girls wants to maximize the sum of the deliciousness of chocolate balls that she would eat. They are sufficiently wise to resolve this conflict peacefully, so they have decided to play a game, and eat the chocolate balls according to the rule of the game as follows:
You are a member of the staff serving for Empress Alice. Your task is to calculate the sums of deliciousness that each of Alice and Brianna can gain, when both of them play optimally.
The input consists of a single test case. The test case is formatted as follows.
$N$ $A$ $B$
$r_1$ $s_1$
$r_2$ $s_2$
.
.
.
$r_N$ $s_N$
The first line contains three integers, $N$, $A$ and $B$. $N$ represents the number of chocolate balls. $A$ and $B$ represent the initial energy levels of Alice and Brianna, respectively. The following $N$ lines describe the chocolate balls in the tube. The chocolate balls are numbered from 1 to $N$, and each of the lines contains two integers, $r_i$ and $s_i$ for $1 \leq i \leq N$. $r_i$ and $s_i$ represent the nutrition value and the deliciousness of chocolate ball $i$, respectively. The input satisfies
Output two integers that represent the total deliciousness that Alice and Brianna can obtain when they play optimally
2 5 4 5 7 4 8
8 7
3 50 1 49 1 0 10 0 1
10 2
4 3 2 1 5 2 46 92 40 1 31
77 45
5 2 5 56 2 22 73 2 2 1 55 14 18
57 93